Datathon – HackNews – Solution – Insight Hunters

Posted Leave a commentPosted in Classification systems

In order to do the following we have to undergo the process of text cleaning, understanding the text. We had to find a way in order to split the data and form a data frame which consists of the following columns.News_TextNews_NumberNews_TypeThe data has lots of fillers which had to be removed and some rows where news_numbers and type were missing. In order to clean the data we had to remove the fillers using the NLTK stop words filtration. Later on we tokenized the data using the word_tokenizer from the nltk package.The next important step was to lemmatize/stem the data to remove the tense from the words and normalize the words. Even though it was a time consumption process the results were promising.XGBoost has capability to handle the imbalanced dataset by using the parameter Scale_Pos_weight. we can do threshold probability throttling to increase the sensitivity by sacrificing the reasonable specificity.Evaluation:- This process is kind of tricky for the train data set provided, as the data was highly imbalanced, the dependent feature/variable had imbalanced classes

Datathon Telenor Solution – Game of Prediction (GoP)

Posted 3 CommentsPosted in Datathons Solutions

The objective of this analysis is to find out the ravens that are not reaching the destination on time. This kind of analysis would help us to scrutinize and understand the towers(ravens) who would require our utmost attention, in order to improve the reasons which are playing a major role in the delays.
The data-set talks about the networks between the towers (ravens). The land based communication happens with the help of signals.
A cellular network or mobile network is a communication network where the last link is wireless. This wireless transmission is done by a tower which comprises of a transmitter and a receiver (for the wireless transmission). The channel provides transmission for both the data as well as Voice transmission.
Every cellular network has different set of frequencies, to avoid any kind of overlapping and interference. Despite of many precautions for maintaining the setup, there are few parameters that are still impacting the transmission. Few parameters can be classified as:
 Infrastructure
 Interference between the frequencies
 Climatic conditions
 External Factors (Predators etc.)
For this our first approach is to create a “Decision Model” which can help us to give value to our business and help in improving the communication.
****** The tools that we using in order to predict is ******
1. Visual Analysis using different plots
2. Usage of ARMA (Auto-regressive- Moving- Average- Model)
The usage of this Decision Model will help us in forecasting the failure rate for next 4-7 days in regards to the Ravens.