Part 2 Exploring market food prices.

Posted Leave a commentPosted in Datathon cases

Abstract¶We would like to see if there is any connection between the products (names) and price, as well as existing patterns. This is set a-priori. When we do the exploration further question will arise. Some of the data will be removed as it will not be used. There will be plots, groupings and hypothesis testing […]

Using Machine Learning to explain and predict the life expectancy of different countries

Posted Leave a commentPosted in Datathon cases

The project tries to create a model based on data provided by the World Health Organization (WHO) to evaluate the life expectancy for different countries in years. The data offers a timeframe from 2000 to 2015. The data originates from here: https://www.kaggle.com/kumarajarshi/life-expectancy-who/data The output algorithms have been used to test if they can maintain their accuracy in predicting the life expectancy for data they haven’t been trained. Four algorithms have been used:

Linear Regression
Ridge Regression
Lasso Regression
ElasticNet Regression
Linear Regression with Polynomic features
Decision Tree Regression
Random Forest Regression

Stochastic Processes and Applications

Posted Leave a commentPosted in Datathon cases

This notebook is a basic introduction into Stochastic Processes. It is meant for the general reader that is not very math savvy, like the course participants in the Math Concepts for Developers in SoftUni.
There is a basic definition. Some examples of the most popular types of processes like Random Walk, Brownian Motion or Weiner Process, Poisson Process and Markov chains have been given. Their basic characteristics and examples for some possible applications are stated. For all the examples there are simulations in Python, some are visualized.
The following packages have been used:

nympy
matplotlib.pyplot
random
scipy.stats
itertools
matplotlib.patches

ACADEMIA DATATHON CASE: THE A.I. CRYPTO TRADER

Posted Leave a commentPosted in Datathon cases

You must be a registered user for the #AcademiaDatathon to see this content.
In an attempt to make a case which is to be somewhat universally understandable by various types of students, the case is financial time-series prediction, while making it more engaging with the hot topic of cryptocurrencies. The case integrates knowledge from various sources – Crypto Currencies, Quantitative Finance and Machine learning. At the same time, the case is stratified as the teams solving it could complete various levels – as far as they could solve it.