# Locally Primitive Normal Cayley Graphs of Metacyclic Groups

### Abstract

A complete characterization of locally primitive normal Cayley graphs of metacyclic groups is given. Namely, let $\Gamma={\rm Cay}(G,S)$ be such a graph, where $G\cong{\Bbb Z}_m.{\Bbb Z}_n$ is a metacyclic group and $m=p_1^{r_1}p_2^{r_2}\cdots p_t^{r_t}$ such that $p_1 < p_2 < \dots < p_t$. It is proved that $G\cong D_{2m}$ is a dihedral group, and $val(\Gamma)=p$ is a prime such that $p|(p_1(p_1-1),p_2-1,\dots,p_t-1)$. Moreover, three types of graphs are constructed which exactly form the class of locally primitive normal Cayley graphs of metacyclic groups.