Big DataNews

6 Key Steps Of The Data Science Life Cycle Explained

6 Key Steps Of The Data Science Life Cycle Explained


The field of data science is rapidly growing and has become an essential tool for businesses and organizations to make data-driven decisions. The data science life cycle is a step-by-step process that helps data scientists to structure their work and ensure that their results are accurate and reliable. In this article, we will be discussing the 6 key steps of the data science life cycle and how they play a crucial role in the data science process.


The data science life cycle is a cyclical process that starts with defining the problem or research question and ends with deploying the model in a production environment. The 6 key steps of the data science life cycle include problem definition, data collection and exploration, data cleaning and preprocessing, data analysis and modeling, evaluation, and deployment. Each step is crucial in the data science process and must be completed to produce accurate and effective models.


Problem Definition

When it comes to data science, the first and arguably most important step is defining the problem or research question. Without a clear understanding of what you are trying to achieve, it’s impossible to move forward in the data science life cycle.


The problem definition step is where you determine the objectives of your project and what you hope to achieve through your analysis. This step is crucial because it lays the foundation for the rest of the project and guides the direction of the data collection, exploration, analysis, and modeling.


For example, if you’re working in the retail industry, your problem might be to identify patterns in customer purchase behavior. This would then guide your data collection efforts to focus on customer demographics, purchase history, and other relevant data. On the other hand, if you’re working in the healthcare industry, your problem might be predicting patient readmissions. This would then guide your data collection efforts to focus on patient health records, treatment history, and other relevant data.


It’s important to note that the problem definition can change as the project progresses. As you explore and analyze the data, you may find that your original problem statement needs to be adjusted. This is normal and is a part of the iterative process of data science.


Data Collection and Exploration

Data collection and exploration are crucial steps in the data science life cycle. The goal of these steps is to gather and analyze the data that will be used to answer the research question or solve the problem defined in the first step.


There are several methods for data collection, including web scraping, APIs, and survey data. Web scraping involves using a program to automatically extract data from websites, while APIs (Application Programming Interfaces) allows for the retrieval of data from a specific source. Survey data is collected by conducting surveys or interviews with a sample of individuals.


Once the data is collected, it is important to explore it to identify patterns, outliers, and missing data. This can be done using tools such as R or Python, which allow for the visualization and manipulation of the data. During this step, it is also important to check for any potential issues with the data, such as missing or duplicate values.


Data exploration can be an iterative process, and it is important to keep the research question or problem in mind while exploring the data. This will help to ensure that the data being analyzed is relevant to the project and that any patterns or insights identified are useful for answering the research question or solving the problem.


Data Cleaning and Preprocessing

Data cleaning and preprocessing are crucial steps in the data science life cycle. These steps help to ensure that the data used in the analysis and modeling stages are accurate, complete, and ready for use. Data cleaning involves identifying and removing duplicates, missing data, and outliers. Data preprocessing involves preparing the data for analysis by converting it into a format that can be used by the chosen analysis and modeling tools.


One of the most important steps in data cleaning is identifying and removing duplicates. Duplicate data can lead to inaccuracies in the analysis and modeling stages, and can also increase the size of the dataset unnecessarily. This can be done by comparing unique identifiers such as ID numbers or email addresses.


Missing data is another issue that must be addressed during data cleaning. Missing data can occur for a variety of reasons such as survey participants not responding to certain questions or data not being recorded correctly. This can be addressed by either removing the missing data or imputing it with a suitable value.


Outliers are data points that lie outside the typical range of values. These points can have a significant impact on the results of the analysis and modeling stages, and therefore must be identified and dealt with accordingly. This can be done by using visualization tools such as box plots or scatter plots.


Data preprocessing involves converting the data into a format that can be used by the chosen analysis and modeling tools. This can include tasks such as converting categorical variables into numerical values, normalizing data, and dealing with missing data.


Data Analysis and Modeling

Data analysis and modeling is the fourth step in the data science life cycle. This step involves using various techniques to uncover insights and patterns in the data that were collected and preprocessed in the previous steps. The goal of data analysis is to understand the underlying structure of the data and extract meaningful information. The most common types of data analysis are descriptive, inferential, and predictive. Descriptive analysis is used to summarize the data, inferential analysis is used to make predictions based on the data, and predictive analysis is used to identify patterns and relationships in the data.


Modeling is the process of creating a mathematical representation of the data. The most common types of models used in data science are regression, classification, and clustering. Regression models are used to predict a continuous outcome, classification models are used to predict a categorical outcome, and clustering models are used to group data points into clusters.


Data analysis and modeling are important steps in the data science life cycle because they help to uncover insights and patterns in the data that can be used to make predictions and decisions. These insights and patterns can be used to improve business processes, make more informed decisions, and create new products and services.


Evaluation and Deployment

The final two steps in the data science life cycle are evaluating the model and deploying it. These steps are crucial in ensuring that the model is accurate and effective in solving the problem it was designed for.


First, the model’s performance is evaluated using various metrics such as accuracy, precision, and recall. This helps to determine if the model is performing well and if any adjustments need to be made. For example, if a model is being used for a binary classification problem, it is important to check the precision and recall rates for both classes.


Once the model has been evaluated and any necessary adjustments have been made, it can be deployed to a production environment. This means that the model is now ready to be used by others to make predictions or decisions. The model can be deployed as an API, a web application, or integrated into an existing system.


It’s important to note that the model should be regularly monitored and updated as needed. This is because the data and the problem it is solving may change over time, and the model may need to be retrained to reflect these changes.



The data science life cycle is a crucial process that helps to ensure accurate and effective models are produced. By following the six key steps of problem definition, data collection and exploration, data cleaning and preprocessing, data analysis and modeling, evaluation, and deployment, data scientists can ensure that their models are robust and can be deployed in a production environment.


At Skillslash, we understand the importance of mastering the data science life cycle, which is why our Advanced Data Science and AI program is designed to give you the knowledge and skills you need to become a successful data scientist. Our program covers all of the key steps in the data science life cycle and is taught by industry experts who have years of experience in the field.


By enrolling in our program, you will learn the latest techniques and tools used in data science and gain hands-on experience through real-world projects. Our program will also provide you with the opportunity to network with other like-minded individuals and gain the confidence and skills you need to succeed in this exciting field.


Moreover, Skillslash also has in-store, exclusive courses Data Science Training in Hyderabad, Full Stack Developer Course, andWeb Development Course to ensure aspirants of each domain have a great learning journey and a secure future in these fields. To find out how you can make a career in the IT and tech field with Skillslash, contact the student support team to learn more about the course and institute.


Share this

8 thoughts on “6 Key Steps Of The Data Science Life Cycle Explained

  1. Big thanks to Mr Mark Toray one of the best binary options managers who have the best strategy and signals that can help you win every time you trade before meeting him I was scammed several times and I lost $28,000 to 2 different managers who claim they are real but turn into monsters the moment I fund my trading account but today I’m so grateful to Mr Mark Toray for coming to my rescue. I started trading with them with just $2000 to test the system they help me trade with my deposit and after 7 working days I made a withdrawal of $20,300. I was so amazed with the profit earned I posted this to those who are already given up on binary and Forex options and to the newbies take advice and be saved.. if you contact him tell him I referred you so that I will have my referring bonus…. you can contact him via [email protected] or telegram @mark4toray_fx You will be glad you did it.

  2. I was scammed by a BTC broker who promised me a massive gain after 2 weeks investing with him.
    I wrote him after 2 weeks, he told me to pay more money to get my money back. i went online and that was
    when i met Mr. JUDAS who got my money back without any delay.
    YOU CAN DO THE SAME BY CONTACTING HIM- {WHATSAPP +19124053415, [email protected]}

  3. I’m Richard Tate from Lincoln, Nebraska. I retired from my truck business some months back, but I decided to invest some part of my money into the stock market, I found a broker online who told me about Cryptocurrency and Bitcoins. I started small and when I saw my profits going up, I invested even more money which was in Bitcoins to the tune of about $178,000. I tried withdrawing my investments but I couldn’t access my wallet and I found out that I have been logged out everywhere. I almost lost my life and my health was deteriorating until I saw a post about SPYWEB CYBER SERVICE, a funds recovery company. I contacted SPYWEB the following day and met all their requirements, to my surprise, SPYWEB CYBER SERVICE was able to recover all my investments in 72 hours. This has come to my attention that there are so many other people who are going through similar issues, I highly recommend SPYWEB CYBER SERVICE for all your fund’s recovery. SPYWEB CYBER SERVICE can be contacted via E-mail: SPYWEB(@)CYBERDUDE.COM & CONTACT(@)SPYWEB.TECH

  4. Many have come to the conclusion that Bitcoin and other cryptocurrencies cannot be traced or recovered but it’s incorrect, it can be traced and recovered with the right tools and resources. I was one of those who didn’t believe in it but I was able to recover my Bitcoin after I sent a huge amount to the wrong address with the help of a recovery team called CYBERWALLFIRE. I thought all hope was lost for good but with the intervention of CYBERWALLFIRE, I was able to trace and recover my Bitcoins. Truly remarkable work by CYBERWALLFIRE and I highly recommend their service.

    CYBERWALLFIRE can be reached via E-mail: Cyberwallfire(@)techie(.)com

  5. This is a very joyful day of my life because of the help PRIEST Salami has rendered to me by helping me get my ex-husband back with his magic and love spell. I was married for 6 years and it was so terrible because my husband was really cheating on me and was seeking a divorce but when I came across PRIEST Salami email on the internet on how he helped so many people to get their ex back and help to fix relationships. and make people happy in their relationship. I explained my situation to him and then sought his help but to my greatest surprise, he told me that he will help me with my case and here I am now celebrating because my Husband has changed totally for good. He always wants to be by me and can not do anything without my presence. I am really enjoying my marriage, what a great celebration. I will keep on testifying on the internet because PRIEST Salami is truly a real spell caster. DO YOU NEED HELP THEN CONTACT DOCTOR PRIEST Salami NOW VIA EMAIL: [email protected]. Whatsapp number: +2348143757229 He is the only answer to your problem and makes you feel happy in your relationship…

  6. My name is ashley walters !!! i am very grateful sharing this great testimonies with you all, The best thing that has ever happened in my life,  is how i won the Powerball lottery. I do believe that someday i will win the Powerball lottery. Finally my dreams came through when i contacted Dr. OSE and tell him i needed the lottery winning special numbers cause i have come a long way spending money on ticket just to make sure i win. But i never knew that winning was so easy with the help of Dr. OSE, until the day i meant the spell caster testimony online, which a lot of people has talked about that he is very powerful and has great powers in casting lottery spell, so i decided to give it a try. I emailed Dr. OSE and he did a spell and gave me the winning lottery special numbers 62, and co-incidentally I have be playing this same number for the past 23years without any winning, But believe me when I play the special number 62 this time and the draws were out i was the mega winner because the special 62 matched all five white-ball numbers as well as the Powerball, in the April 4 drawing to win the $70 million jackpot prize…… Dr. OSE, truly you are the best, with Dr. OSE you can will millions of money through lottery. i am a living testimony and so very happy i meant him, and i will forever be grateful to him…… you can Email him for your own winning special lottery numbers now [email protected] OR WHATSAPP him +2348136482342

  7. Awesome!! I like your post. Similarly, we provide basic and advanced computer courses offering a wide range of courses such as MS Office applications, Graphics and animation, computer programming languages, tally, tally prime, digital marketing, database management, web designing, and many more. Don’t miss this golden opportunity to enhance your skill sets and excel in your career. Visit Best Online Courses now and unlock your full potential!”

  8. Hello everyone! I wanted to share an amazing tool I recently discovered called Instazoom. It’s an anonymous Instagram viewer that allows you to view profiles and posts without leaving a trace. I found it really useful, especially when I want to explore someone’s Instagram without them knowing. It’s super easy to use, just visit their website at and start browsing anonymously. Highly recommend checking it out if you’re interested!

Leave a Reply